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Selected AI Research Topics at Rome

• Surveillance Internetting/ID, 1982.  Aim: “Autonomous Control of Distributed 
Tactical Sensor Networks.” Source: Rome Research Site Archives.

• Advanced Onboard Signal Processor (AOSP), 1982.  Nine-node Experimental 
AOSP Developed.  Aim: Multi Mission Signal Processing for Sensors in Space, 
Including Fault Detection & Reconfiguration Actions.  Source: Rome Research 
Site Archives.

• Adaptive Control of Multi-Domain Sensor Processor, 1986.  Aim: Apply AI for 
Controlling Parameters & Modes of Advanced Multi-Function Radar Systems.  
Source: Rome Research Site Archives.

• Expert System CFAR, 1988.  Aim: Apply AI to Select & Apply CFAR Detector in 
Radar.  Source: Rome Research Site Archives.

• Tactical Expert Mission Planner (TEMPLAR), 1989.  Aim: Apply AI to 
Preparation of the Air Tasking Order (ATO).  Source: Rome Research Site 
Archives.

• ELINT Expert Tutor, 1990.  Aim: Apply AI to the Training of Signal Intelligence 
(SIGINT) Analysts at the Foreign Technology Division (FTD).  Source: Rome 
Research Site Archives.

• AI Algorithms for Sensor Fusion, 1994. Aim: Apply AI to Automatic Target 
Recognition.  Source: Rome Research Site Archives.

• Knowledge Base STAP, 1995.  Aim: Apply AI to Assess the Environment & 
Apply the Most Appropriate STAP Algorithm. Source: Rome Research Site 
Archives.
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Motivation for Knowledge Aided 
Approaches to Radar Signal and Data 

Processing
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Dynamic & Non-Homogeneous 
Background Environment
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The Benefit

• Greater than 10 dB End-to-End Radar Performance 
Improvements in Real-World Dynamic & Non-
Homogeneous Environments
– Airborne Radar
– Space-Based Radar

• Enhanced Subclutter Visibility
– AMTI

• Lower Minimum Detectable Velocity (< 0.1 Knot)
– GMTI

• Improved Discrimination and/or Identification
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Integrated Knowledge-Based
Signal & Data Processing

• Each Stage of Processing Affects the Others
• Best Overall Performance is Achieved From an 

Integrated End-to-End Approach
– Requires Integrated Design
– Not Merely Data Passing From One Stage to the Next

> i.e. Match Degrees of Freedom, Statistics & Detector 
Design

– Adaptivity & Feedback/Forward Essential
– Waveforms Matched to the Problem
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Waveform Diversity & Knowledge Base 
Control
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Transmit Waveform Diversity

Interleaved 
Pulses

Long Dwell Pulse Two-Pulse Burst for MTD

Frequency Change

Chirp 
Pulse

Polarization 
Modulation Diversity

Some Applications 
• Optimal Selection of Waveforms Based on Environmental Assessment

• Spatial-Temporal Denial of Enemy Sensors and Systems

• Simultaneous, Multi-Mission Waveforms, e.g. GMTI, AMTI, Track, ATR (“systems 
approach”)

• Innovative Waveforms for New Missions (FOPEN, GPEN, etc.)

*high duty cycle
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Expert System CFAR



13KBTechs in RadarSigProc_Wicks 19Mar02

Expert System CFAR

• ES-CFAR Was Our First Attempt at Using AI to Select Radar Signal 
Processing Algorithms & Parameters

• The CFAR Problem

– Fielded Radar Signal Processors Are Designed To Use A Single, Fixed 
CFAR Algorithm

– Any Given CFAR Algorithm Is Designed With Assumptions About The 
Background & Will Perform Optimally When These Background 
Conditions Are Realized In The Environment

– In a Typical Airborne Radar Environment Clutter Parameters Are 
Dynamically Changing & a Single, Fixed CFAR Processor Will Exhibit 
Excessive False Alarms & Detection Degradation in Regions Where The 
Background Characteristics Violate The Design Assumptions
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Our Approach

• Detection Processor Capable Of:

– Monitoring The Radar Clutter Environment

– Determining The Statistical Characteristics

– Matching The CFAR Algorithm To The Environment

> Choice Of 4 Algorithms

» CA, GO OS and TM CFAR

> Variable Reference Window Size

• Payoff: 

– Improved Target Detection

– Reduced False Alarms

– Easily Implemented & At Relatively Low Cost
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Measured Data Summary

DESIRED Pfa Pd Pfa Pd Pfa Pd Pfa

1e-3 0.92 1.2e-3 0.62 2.5e-3 0.67 4.4e-3
1e-4 0.90 3.9e-4 0.51 8.0e-4 0.64 2.3e-3

1e-5 0.87 1.3e-4 0.44 3.3e-4 0.62 1.5e-3
1e-6 0.87 4.0e-5 0.28 1.6e-4 0.56 1.1e-3

EXPERT SYSTEM CFAR BASELINE CELL-AVG. BASELINE ORDERED STAT.

• THE INCREASE IN SINR OTHERWISE REQUIRED TO IMPROVE 
DETECTION PERFORMANCE BY THIS AMOUNT IS ~ 5dB
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KB Tracker
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Knowledge-Based Tracking

Simulated Results
• Fewer Dropped Tracks
• Better Tracking Performance

Knowledge-Based Anticipates:
• Maneuvers
• Shadowing
• Discretes
• Road Traffic
• Multiple Targets

With Maneuver 
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No Maneuver 
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KB STAP
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KB STAP

• The Logical Extension of ES CFAR to the Filter Stage of 
Processing

• End-to-End Processing was Investigated Under KBSTAP
– Lower MDV
– Smaller RCS

Filtering Detection Track

+5dB +5dB +3dB
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KB STAP in Bistatic/Multistatic Radar

SOJ

Main Beam Jamming
Denial to AWACS

Main Beam Jamming
Denial to UAV

UAV not jammed
(sidelobe nulling)

• Low Velocity Crossing
Target to AWACS is
High Velocity Target
to UAV

• Target RCS Enhancement 
• Low Velocity Detection
• Jamming Denial 
• Accuracy Improvements
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Bistatic Radar

• Payoff
– 2 Orders of Magnitude Improvement in Noise
– 3 Orders of Magnitude Improvement in Clutter

Range 12dB

Losses 2dB

RCS Enhancement 10dB

24dB In Noise

Signal Processing 10dB

34dB In Clutter
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KB - Why Now?

• Potential Performance Gains Demonstrated with Advanced 
Algorithms
– KB-STAP
– Expert System CFAR
– Knowledge-Based Tracking

• Emerging Embedded Processing Technology Provides 
Capability to Implement in Real-Time, Fielded Systems

• Waveform General Timing & Control Now Permits Interleaved & 
For Simultaneous Waveforms

Now We Can Demonstrate

Performance Gains of Integrated

Knowledge-Based Processing in Real-Time
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Methodology

• “… Substantial Performance Improvements Will Likely Not Be the 
Result of Higher Power-Aperture Products”

• “… Substantial Performance Gains Will More Likely Be the Result of 
Advanced Processing Techniques”

• Careful Selection of Algorithms, Parameters, and Training Data 
Produces Significant Performance Improvements Over Conventional 
Processing

• An Integrated Approach to Dynamic Waveform Selection & Signal 
Processing (Filtering, Detection, Tracking, Identification,…) 

• Greatest Improvements are Achieved in the Most Severe 
Environments

Intelligent Use of CFAR Algorithms, RL-TR-93-75, May 1993.

Novel Diverse Waveforms, AFRL-SN-RS-TR-2001-52, June 2001.

Knowledge-Base Applications to Ground Moving Target Detection, AFRL-SN-RS TR-2001-185, August 2001.
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Measured Data is Important!
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Sensors Surveillance Facility
Rome Research Site

S-Band Dual Polarized Track 
and Imaging Radar

ESM/Bistatic Sensor Test Bed L-Band Search Radar

C-Band Multi-Channel Dual Polarized 
Phased Array Radar

Multi-Channel Airborne Radar Measurements

Rome New York

High Performance Computing
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MCARM Testbed & Antenna Array
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Magnitude of MCARM Steering Vectors

Ideal Array

MCARM Array

? ? ? ? ? ? ? ?? ?TkdNjkdjjkd eees ??? sin1sin2sin   1 ?? ?

- Very Similar to Fourier Coefficients
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Practical STAP Processing
JDL Algorithm
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Measured Steering Vectors:  JDL

Assuming Ideal Array Accounting for MCARM array effects
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Processing Non-Homogeneous Data

• Statistical STAP Methods Estimate Covariance Matrix Using 
Secondary Data
– Interference Assumed to be Homogeneous

• Real Radar Data is Non-Homogeneous
– Terrain Variations
– Multiple Interference Targets
– Discretes/Blinking Jammers

• Use Non-Homogeneity Detector (NHD) or KB Map STAP
– Eliminate Non-Homogeneous Cells From Estimate
– Use JDL as our NHD
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Secondary Data Selection

(a) Homogeneous 
Case 

(b) Non-Homogeneous 
Case 
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Intelligent Sample Selection

Detection

Measured E-3A Data Results
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KB MAP STAP Training Data Selection

Radar Visualization of Terrain Clutter & Injected Targets
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The Hybrid Method
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Hybrid Methods – Why?

• Motivation:  How to Process Non-Homogeneous 
Cells?
– Interference Has Correlated And Uncorrelated (Non-

Homogeneous) Components

• Solution:  Use a Hybrid Approach
– Non-Statistical Processing Followed by Statistical Processing
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Block Diagram of the Two-Stage 
Hybrid Algorithm
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Performance Simulations
D3 (Direct Data Domain) Algorithm

Angle Response Doppler Response
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Performance Simulations
JDL Algorithm

Angle Response Doppler Response
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Performance Simulations
The Two-Stage Hybrid Method

Angle Response Doppler Response
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MCARM Data Analysis Using the 
Hybrid Method
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Knowledge Based Space-Time Adaptive 
Processing (KB-STAP)
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Data Source

8 miles 19 miles
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Ground & Air Moving Target Indication

Combined ApproachClassical STAP
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Enhanced Moving Target Indication
Via KB-STAP

STAP with Non-Homogeneity Detection
Range Corresponds

To Rt. 301/Rt. 290
Rt. 15

Rt. 13

Injected TargetsInjected Target

Classical STAP

To Detect Weak Targets, You Have to Deal
with False Alarms!!

? KB-STAP Provides the Ability to See Ground Moving
Targets Without Excessive False Alarms
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Observation

• We Must Use All Available Information
• We Must Account for Real World Effects

– Essential to Move Adaptive Processing form 
Theory to Practice

> Mutual Coupling
> Non-Homogeneous Data

• Accounting for Real World Effects Will
– Improve STAP Performance
– Marginally Increase Computational Load
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The Future

• Leverage Considerable Previous Investments

• Put Knowledge-Based Algorithms Into Fielded 
& Developmental Systems
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Transition to Users
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Conclusions

• Maximum Leverage of Previous Investments

• Knowledge-Based Algorithms for Significant 
Performance Improvements

– Multi-Pass Processing

– End-to-End Integration

– Knowledge-Based Control

• Real-Time Airborne Demonstration

• Transition to Fielded Systems


